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MIXED SPATIAL PROBLEMS OF ELASTICITY THEORY WITH A
CIRCULAR LINE SEPARATING THE BOUNDARY CONDITIONS*

R.V. GOL'DSHTEIN and YU.V. ZHITNIKOV

Mixed problems for the Laplace equation in a half-space that occur in the
theory of contact interaction and the theory of cracks are considered.

The lines separating the boundary condition are considered to be
circular, but the problem can be non-axisymmetric. Special integral
relations are set up between the Fourier transform components of a
harmonic function and its derivatives in the problems mentioned. The
solution of a problem of an annular separation crack in an unbounded
medium under non-axisymmetric loads is constructed as an example. Other
examples are contained in /1-7/ and in the preprint*¥ where the contact
problem is considered.

The method used in this paper to construct the fundamental relationships is closest to
that proposed in /3/. Different approaches to the construction of the solution of the mixed
problems for a harmonic function in a half-space with circular interfacial lines are con-
sidered in a non-axisymmetric formulation in /1-4/.

1. Fundamental representations for a harmonic function. Let  f(r, B, ) be a harmonic
function in the half-space 3 >0({r,B,zs) are cylindrical coordinates). It can be represented
in the form of the series

f= _i faexp(inf) (1.4)

Ia "—*S A {q) T (ar) exp(— qz;) g dg
0

A@ =S 1.0 T (g, ) rdr
8

Let us first examine the case n > 0. We use well-known representations to transform
expressions {(1.1)

i

I (v )T () () = | A —eptheosaidt, Rev>— (1.2)
)
1r (=) (5] =2 @ — thsinzar, 0<Rov< - (.3
1

These representations can be considered as a Fourier transformation of functions(l — £3)v-7/s,
(2 — 1)v-/: symmetric and antisymmetric with respect to the point ¢t =20.
We continue the left sides of (1.2} and (1.3) analytically, respectively, in the domain

Rev < —1Y,, Rev >, We will here consider ri‘ ht-hand si;ﬂes as Fourier cosine and sine
transforms of the generalized functions (1 — 3}/, (£ — 1);"'/’.
We set v = —n in (1.2) and v =nr in (1.3) and take z =rq. Then
a’ o
J

T ¢ = S (r® — 22" cos gudz
1
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oo

ng_ ot
T g = S (2 — r3;" Msin gz dz

TI@n— D

Ssubstituting these expressions into (1.1) and changing the order of integration, we
obtain

o

fa=r"@n — M (2 — 2D (2, ) da (1.4),
o
P (2, 7) = = 050 4, () exp(— gz5) g1 cos gz dg (1.5
o
fo=r"Cn— I {— 4)ﬂ§° (22— r7 i (2, 2g) de (1.6),
9
P (@, 25) = % So A (q) oxp (— %) g™ sin gz dg (1.7).
'3

From (1.1) for A,(¢) we have Jn{gr) ~ (¢)" as ¢-—0. Therefore, the function in
the integrand of (1.5) and (1.7) is integrable and damps out as Z3—* c©. We shall still
assume that 2.>>0. Then f, in {(1.4) and (1.6) damps out as r— oo, I3~ . The functions
P (z, 23}, ¥, (@, 73) here satisfy the two-dimensional Laplace equation and are analytic.

'We now consider the following expressions for f,{r,z,) and ©&f, (r, z3)/0z;3,. that are
necessary to construct the integral relations. We take the derivative with respect to z; in
(1.4). .
Then taking account of the integral W, within the limits from 0 to T we obtain by
using the relationship (1.7)

af % 2
S vz = 2n 4 1 § (2 — A (2,2 2 o (1.8y
¢

We will use the relations

(L) a2 = (1) 2 — 1 (@21 (1.9
(—3;*:;-)“ [ I;nl (r*— x*):"?] = 2n + O — 2

to set up a connection between {1.8) and (1.6).
The first relation in (1.9) is obvious, the second is proved by mathematical induction.
We introduce the function

P2 (2, z5) ]

1 é
Q‘“’(x,za)=x("7ﬁ'>[ E

z

Then by using (1.9}, we obtain that (1.8) and {1.6) take the following form after in-
tegration by parts /3/

af ¢ » .
T =\ (2t (2, 2,) da (1.10)
0
falrozg) = § @ — 7" D, (2, 7,) di (1.11)

o

We will now use the relationships /3/
_% S (2 — r”)’:h (rt — xs):‘/s rdr = H (2, — ) (1.12)
o

Taking the integral by parts in (1.10), and then we multiply the relationship obtained
by r*{x® — ), rdr, and (1.11) by r ™ (® — x,?),rdr with (1.12) taken into account, we
obtain two representations for the functions @P,® (z, z5), after integration between 0 and oo
and differentiation of the second relationship with respect to z,, and by comparing them we
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obtain the first integral relation

L Xy
4+ F i Bf
A I W @) dr = {2 W (@, ) dr (1-13)
N &
The following notation has been introduced here: W{r, =)= (* —z2™ and Wz, r) =
(z® — ™™,  which will henceforth be used.

To obtain the second integral relation we take the derivative with respect to 3 in
{1.6) and taking account of (1.5) and (1.7) we obtain

o= @n— 1 7 — D (2, ) d {1.14)
0
af - —n-1 alp(nl)
o= 2n = U (@ T e (1.15)

0

We will use the relationship {1.9) and the relationship

Ti_ (_i_ _52:)““‘ [22n2 (12 — 227 == (21 — D)1 (12 e 27" e p20

to set up the connection between (1.14) and {(1.15}).

The proof of these relationships is analogous to the proof of the relationships {1.9).
Then, taking the integrals by parts in {1.14) and (1.15), and taking account of the last
relationships, by introducing the function

D, (2, z5) = 9 {z10/0a)"p, D (, zy)}/dx

we obtain

o

o= r—nS (1% e 287 Vi1 g (1.18)
o
Y e iy, (@t
»—5«;& == F S(x2—~r2)+‘/' ""“S%— dx (1'17)
&

Multiplying {1.18) and {1.17) by r{z?—7r),"rdr and 7" (2 —z?), s rdr respectively,
and taking {1.12) into account we integrate between 0 and ©©. Then we differentiate the
first of the relations obtained with respect to &, after which we arrive at two represen=
tations of the functions @, (z,, #,), comparing which we obtain the second integral relation

x S
@ . n ¢
Dotz S s (ar W (2, ) dr = — 2 \ G2 W (ry z) dr
¢ 2%

Dy, = limp (for™)

This last integral relation and the relationship (1.13) were obtained for the case n > (.
These relationships also hold for the case when n << 0 by replacing n therein by {n|/3/
and will have the form

= %
™ E ]
™ § o ) W 2 dr = {2 W @) ar 1-18)
xy 0
x, I
) e o
D, +x, S e (P ) W (g, 7) dr = — S a—f;;-rww (r 2, dr {1.19)
b Xy

Dn = ﬁmr—’ﬁ {fnrm)s m={n}
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Therefore, the relationships obtained connect the value of f, and &f,/0z;. In particular,
in the construction of the solution of the mixed problem of elasticity theory in the half-space
Z3, >0, when for r >R we know that 9f,/02y, z, =0, while for r<<R, f,(r,0),
convenient to use (1.19). If f, is known for z3 =20
8fnldxs, then (1.18).

¥We now examine the more general case of the mixed problem with two interfacial lines of
the boundary conditions. Let a boundary condition be given for z, =0

so it is
and r >R, while for r<<R, z; = 0,

fztpl(r,ﬁ),0<r<ﬁ,)‘=%(r,ﬁ),r,>a (1'20)
-=xrf R<r<a

We introduce the notation &fifzy = % (B 0 < r < B; 8f02y = %, (r, B), r>>a.

Then we
have asystemof equations for z;, =0 from (1.18) and {1.19)

R o
§$ 1™ W gy dr +§ qour™™W () dr = FL () 0<y<R
¥ a

I

(1.21)
i Y
§ xanr W (g, Py dr + oW (g, 1) dr = Py () y>a
0 a

Y

Fi(g) =~ \ sr™™W () — g7 [ Doty \ 5 0™ W (g 1) 7|
R @

@ E3

Fa) == { armW . r)dr + g2t {2 (@uurm) W (7, y) dr

R Y

To obtain the solution of system (1.21), we regularize it. We multiply the first equation
by (y* — 2%)ydy and integrate it between & and R and then differentiate with respect to

Z. We multiply the second equation by ydy(2? — y®)~+ and integrate between ¢ and Z and then
take the derivative with respect to &. We consequently obtain

1y ¢ X, nW‘hl (r’ R) e
o Yan 7 W(R,x)g—”——;r_—z,—'——dr=¢1(x) 0<z<R (1.22)

¢ R
n 2, WL (g, ) rmHL
5 Yan -+ & {x, a)S%dr =, (1) z>a
8

R R

V(@) = =" -\ Fuw @, ) dy =2 (P (RYW (R, ) — (W (v, 2) )

x
x

FyW (z,y) &y =zm(Fy@W (@,0) + {FyW (2, ) dy)

a

‘Pz(z)=f""§;

ey *

We note that in the special case when @ (P =0,0<r<CR, ¢, {r, B =0,

r>a the
expression for the function  ¥; (), $: {¥) in (1.22) simplifies to

¢ L 7"W (R
‘Pl(x)=me(R,I)§iﬁ—;;—_—z£r—)rdr 0Lz<LR

e W1 (a, m+1L
“’8 (.22) P (SC, a)§ i&_&__

P pa dr r>a

The system (1.22) already does not contain the singularity in the integrand for

We will now examine the question of the method of solving this system.
(r* — 231 and

r=2z

To do this, we expand
(z* — r®), respectively in the integrands of (1.22) in powers of

r2z?  and
r2y 3 and substitute into (1.22). We hence obtain
Xin= = [$:(@— ¥ AW (B,5)], 0<z<R (23

k=

2 o
Xan = [ 93 (&) — Y Ca "W (2,0)], z>a
K=t
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Ay = S Xen (u -1 (r, R) r-2k-14m gp
a
R

Cy = S YWt (@, r) riktmel g

1]

We multiply the first equation of system (1.23) by 2**™ (a* — 2?)'szdz, and the second by
X (22 RYhadr  and integrate, respectively, between 0 and R and between a and

o0,
We obtain the system of algebraic equations
o
I 2i4me3 bl
—g—-L, (%) ™4 }_} My Fre =90 (1.249)
k=0
l o
n 2l+m - (0)
TMI<%) +k}_‘Lka+z=1Pz.z
=)

1

Frpp = S(52 4+ (1 — gtyksiimdn, g = (a®/R® — 1y
[

Fﬁz — Fk+sz(k+l+m+1), Al — MlR—(:aHm-l)

Fy = Fya—200smisR - C) = L adl+m+s
1

PO = L O (&) (1 — m2yeme (2 - m2)edn
a

i
0= § O (&) (1 — mp)mia-s(e? 4 vy
9

D, (2) = RO (), @, (2) = a®, (&)
¥ (2) = Oy (@R — 297, ¥, (2) = Dy (2)(a* — a7
Bo=( — )R, & =a(l —n)

The theory of infinite systems is discussed in /9/, for example. The solution of the
infinite system of algebraic Egs.{1.2) obtained will be examined below by the method of
reduction in the example of mixed problems of elasticity theory /9/.

2. Fundamental representations of elastieity theory for a normal problem.
the computation. Let a disc or annular crack  be in the z43:=10

system of coordinates for normal loads given on its surfaces.
and stress O3 in the

Examples of
plane in an X, XX,
The normal displacement u; =u
z; = 0 plane will be described in terms of the harmonic function f

T .
033—29(1~wa7;;;>5—13 @2.1)

u:<2——2v—~xa-‘%>]‘

The expression for the remaining displacement and stress components is in /3/.
The boundary-value problem for the half-space 2,<C0 has the form

3fibay = o {r, B), (7, ) E R

(2.2)
f=ulr )21 — )
As an illustration we consider the case of a disc crack of radius a. We use the
relationships (1.18) and taking account of (2.2) obtain
a 4 x
) — . -
Sa—y {(y ) Wy, z) dy = <_H.x>. gt S oy W (z, yydy, 0Lz e 2.3)
x o
Multiplying (2.3) by zdz (2* — ¥?)/* and integrating between r and a we obtain
a x
Uy (r, 0) = — f_(.tn_p_") rind S 22 W (z, rydz 5 o, y"W (2, y) dy (2.4)
T o
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0gre

This result agrees with that obtained in /3/.
We will now examine the case of an exterior crack of radius
relationship (1.19) and taking account of (2.2), we have

a, @ = (a, ©). We use the

oo

STB,,- ymu,) W (z, y) dy = “‘T") ziinit S Ony MW (y, z)dy

r>=a

Multiplying this relationship by zdz (2 — 2%+ and integrating between a and r we obtain

Uy, = — 2(;“‘;"_) r=inl S zzl’nlW (T‘, z) dzx S O-ﬂy—|7l|+1W (y' I) dy r>a (2_5)

a

Expressions (2.4) and (2.5) determine the Fourier components of the expansion of the
displacement in terms of the Fourier components of the stresses. Multiplying these expressions
by € and summing while taking into account

.
° )
u= 2 u,em®
n=—oo0
an

on =g § o(r.Bemrdp
0

we obtain
(g e
wiro ) =— 22\ oy, 2W (@) W (2, y) y dy dadp (2.6)
o r o
N ‘
u(r, ¢) =" n—,u”’ V\Vow. Bzw o, o)W v, 2)y dy dz dp
0 4 x

Z = (@ — yr)i(ry — 2rya? cos (B — @) + Y

The first relationship in (2.6) is identical with that obtained in /3/.
We now examine the case of a ring crack b <{r<{a and a load o (r, B, 0) = 0, (r) + ope'™®
In this case the displacement will have the form

P Lo es u(r, B) = ug (r) + upe'mP

CIZR Y il Correspondingly, the intensity factors are K = K® { K(Mginb
0¢ == >‘\§ The dependence of Kmon bla for 0, = 6, = ¢ = const and
" R m = 1,2 is displayed in the figure for the crack boundary

/< m=2 \ for r=1"5 (the solid lines) and r'=a (the dashed lines).

\

4 g5 s/a 1
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